Una ecuación cuadrática es una ecuación en su forma ax2 + bx + c, donde a, b, y c son números reales.
Ejemplos de ecuaciones cuadráticas:
![]() | En esta a=2, b=5 y c=3 | |
![]() | Aquí hay una un poco más complicada:
| |
![]() | ¡Ups! Esta no es una ecuación cuadrática, porque le falta el x2 (es decir a=0, y por eso no puede ser cuadrática) |
Las ecuaciones cuadráticas se pueden resolver usando una fórmula especial llamada fórmula cuadrática:

![]() | El "±" quiere decir que tienes que hacer más Y menos, ¡así que normalmente hay dos soluciones! |
![]() | La parte azul (b2 - 4ac) se llama discriminante, porque sirve para "discriminar" (decidir) entre los tipos posibles de respuesta:
|
Solución
Para resolverla, sólo pon los valores de a,b y c en la fórmula cuadrática y haz los cálculos.
Ejemplo: resuelve 5x² + 6x + 1 = 0
Fórmula cuadrática: x = [ -b ± √(b2-4ac) ] / 2a
Los coeficientes son: a = 5, b = 6, c = 1
Sustituye a,b,c: x = [ -6 ± √(62-4×5×1) ] / 2×5
Resuelve: x = [ -6 ± √(36-20) ]/10 = [ -6 ± √(16) ]/10 = ( -6 ± 4 )/10
Respuesta: x = -0.2 and -1
(Comprobación:
5×(-0.2)² + 6×(-0.2) + 1 = 5×(0.04) + 6×(-0.2) + 1 = 0.2 -1.2 + 1 = 0
5×(-1)² + 6×(-1) + 1 = 5×(1) + 6×(-1) + 1 = 5 - 6 + 1 = 0)
5×(-0.2)² + 6×(-0.2) + 1 = 5×(0.04) + 6×(-0.2) + 1 = 0.2 -1.2 + 1 = 0
5×(-1)² + 6×(-1) + 1 = 5×(1) + 6×(-1) + 1 = 5 - 6 + 1 = 0)
Ecuaciones cuadráticas disfrazadas
Algunas ecuaciones no parece que sean cuadráticas, pero con manipulaciones astutas se pueden transformar en una:
Disfrazadas | Qué hacer | En forma estándar | a, b y c |
---|---|---|---|
x2 = 3x -1 | Mueve todos los términos a la izquierda | x2 - 3x + 1 = 0 | a=1, b=-3, c=1 |
2(x2 - 2x) = 5 | Desarrolla paréntesis | 2x2 - 4x - 5 = 0 | a=2, b=-4, c=-5 |
x(x-1) = 3 | Desarrolla paréntesis | x2 - x - 3 = 0 | a=1, b=-1, c=-3 |
5 + 1/x - 1/x2 = 0 | Multiplica por x2 | 5x2 + x - 1 = 0 | a=5, b=1, c=-1 |
x = 4 x = -8
2 2
x = 2 x = - 4
No hay comentarios.:
Publicar un comentario